Difference between revisions of "Reverse-Engineering"

From YobiWiki
Jump to navigation Jump to search
Line 130: Line 130:
 
strings [-n min_length] -a -e [s|S|b|l|B|L] mybin
 
strings [-n min_length] -a -e [s|S|b|l|B|L] mybin
 
==ELF==
 
==ELF==
  +
man elf
  +
===readelf===
  +
readelf -a -g -t --dyn-syms -W
  +
===elfedit===
  +
===objdump===
  +
objdump -C -g -F -x -T --special-syms
  +
objdump -d -l -r -R -S
  +
objdump -D -l -r -R -S
  +
===nm===
  +
nm -a -C -S -s --special-syms myfile
 
===ldd===
 
===ldd===
 
Shared library dependencies:
 
Shared library dependencies:

Revision as of 22:13, 4 October 2013

You'll find a lot of (moderate) reverse-engineering in this wiki but this page aims at providing a list of useful resources.
You won't' find much info about Windows platform because the topic is already quite well covered elsewhere.

Books

Resources

Tools

IDA Pro

IDA Pro combines an interactive, programmable, multi-processor disassembler coupled to a local and remote debugger and augmented by a complete plugin programming environment.

Hex-Rays

The most expensivepowerful IDA Pro plugin is the Hex-Rays decompiler

  • x86 and ARM
  • decompiler

Limitations specific to ARM:

  • floating point instructions are not supported
  • VFP/SIMD/Neon/... instructions are not supported
  • functions having an argument that is passed partially on registers and partially on the stack are not supported (e.g. int64 passed in R3 and on the stack)

Intel PIN tools

  • Official page
  • Windows, Linux, Mac OS X, Android
  • x86-32, x86-64 (only Intel platforms obviously)
  • binary instrumentation

The best way to think about Pin is as a "just in time" (JIT) compiler. The input to this compiler is not bytecode, however, but a regular executable. Pin intercepts the execution of the first instruction of the executable and generates ("compiles") new code for the straight line code sequence starting at this instruction. It then transfers control to the generated sequence. The generated code sequence is almost identical to the original one, but Pin ensures that it regains control when a branch exits the sequence. After regaining control, Pin generates more code for the branch target and continues execution. Pin makes this efficient by keeping all of the generated code in memory so it can be reused and directly branching from one sequence to another. In JIT mode, the only code ever executed is the generated code. The original code is only used for reference. When generating code, Pin gives the user an opportunity to inject their own code (instrumentation).

Vdb/Vtrace / Vivisect

  • debugger, static analysis
  • Windows, Linux, Android
  • Intel, ARM

vtrace is a cross-platform process debugging API implemented in python, and vdb is a debugger which uses it
vivisect is a Python based static analysis and emulation framework

Cuckoo Sandboxing

Currently only supporting Windows binaries.
Cuckoo Sandbox is a malware analysis system. You can throw any suspicious file at it and in a matter of seconds Cuckoo will provide you back some detailed results outlining what such file did when executed inside an isolated environment. Cuckoo generates a handful of different raw data which include:

  • Native functions and Windows API calls traces
  • Copies of files created and deleted from the filesystem
  • Dump of the memory of the selected process
  • Full memory dump of the analysis machine
  • Screenshots of the desktop during the execution of the malware analysis
  • Network dump generated by the machine used for the analysis

Lib preloading

#define _GNU_SOURCE

#include <dlfcn.h>
#include <sys/types.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <time.h>


// Kill nanosleep()
int nanosleep(const struct timespec *req, struct timespec *rem){
    printf("\n==== In our own nanosleep(), I dunnah want sleep\n");
    return 0;
}

// Kill usleep()
int usleep(useconds_t usec){
    printf("\n==== In our own usleep(), I dunnah want sleep\n");
    return 0;
}

// Fix time()
time_t time(time_t *t){
    printf("\n==== In our own time(), will return 1380120175\n");
    return 1380120175;
}

// Fix srand()
void srand(unsigned int seed){
    printf("\n==== In our own srand(), will do srand(0)\n");
    void (*original_srand)(unsigned int seed);
    original_srand = dlsym(RTLD_NEXT, "srand");
    unsigned int myseed = 0;
    return (*original_srand)(myseed);
}

#if 0
// Kill rand()
int rand(void){
    printf("\n==== In our own rand(), will return 0\n");
    return 0;
}
#else
// Intercept rand()
int rand(void){
    int (*original_rand)(void);
    original_rand = dlsym(RTLD_NEXT, "rand");
    int r = (*original_rand)();
    printf("\n==== In our own rand(), will return %04X\n", r);
    return r;
}
#endif
gcc -fPIC -shared -Wl,-soname,patch -o patch.so patch.c -ldl
export LD_PRELOAD=patch.so
export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

Packers

upx -d myfile

Poor man's tools

File, -z to uncompress, -s to inspect non-files, e.g. /dev/sda1

file -k [-z] [-s] mybin 

Strings

strings [-n min_length] -a -e [s|S|b|l|B|L] mybin

ELF

man elf

readelf

readelf -a -g -t --dyn-syms -W

elfedit

objdump

objdump -C -g -F -x -T --special-syms
objdump -d -l -r -R -S
objdump -D -l -r -R -S

nm

nm -a -C -S -s --special-syms myfile

ldd

Shared library dependencies:

ldd -v mybin

ltrace/strace

Tracing library calls and system calls.
Getting a summary:

ltrace -f -S mybin 2>&1|grep '(.*)'|sed 's/(.*//'|sort|uniq -c

Getting more:

ltrace -f -i -S -n 4 -s 1024 mybin

PE

Pefile

A Python module to read and work with PE (Portable Executable) files, see usage examples (runs under Linux too)

#!/usr/bin/env python
import sys, pefile
pe = pefile.PE(sys.argv[1])
pe.dump_info()
open('out.txt', 'w').write(pe.dump_info())

PEiD

PETools

Resource Hacker

Dependency Walker

PEview

DLL Export Viewer

PEBrowse Pro