Difference between revisions of "Present python implementation"
Jump to navigation
Jump to search
m |
m (deleted comments from during development) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | This is a development done by Christophe Oosterlynck under my supervision during his thesis work & internship at NXP. |
||
− | what should be working (only tested with 1 or 2 test vectors yet): |
||
+ | |||
+ | The code is available [http://repo.or.cz/w/python-cryptoplus.git?a=blob;f=src/CryptoPlus/Cipher/pypresent.py;hb=HEAD here] |
||
+ | |||
+ | Features: |
||
* calculating round keys |
* calculating round keys |
||
* encrypting a block |
* encrypting a block |
||
* decrypting a block |
* decrypting a block |
||
+ | * supports amount of rounds different from the standard amount of 32 |
||
− | ** decryption testvectors have errors: the sbox on decryption behaves like the inverse of the p-box... every S-Box value is incorrect in the testvectors.<br>Example: |
||
+ | ** tested with 32, 64, 128 and 65534 rounds |
||
− | Round 1 |
||
+ | ** PRESENT reference implementation supports amount of rounds up to 65534 |
||
− | Subkey: 6dab31744f41d700 |
||
− | Text after... |
||
− | ...Key-Xor: 38d2f04c34635345 |
||
− | .....P-Box: 45ef82118f2845a3 |
||
− | .....S-Box: 38d2f04c34635345 |
||
− | {{#fileanchor: pypresent.py}} |
||
− | <source lang=python> |
||
− | # fully based on standard specifications: http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/present_ches2007.pdf |
||
− | # test vectors: http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/slides/present_testvectors.zip |
||
− | |||
− | class Present: |
||
− | |||
− | def __init__(self,key): |
||
− | self.key = key.encode('hex') |
||
− | if len(self.key) == 80/4: |
||
− | self.roundkeys = generateRoundkeys80(self.key) |
||
− | elif len(self.key) == 128/4: |
||
− | self.roundkeys = generateRoundkeys128(self.key) |
||
− | else: |
||
− | pass |
||
− | |||
− | def encrypt(self,block): |
||
− | state = block.encode('hex') |
||
− | for i in range (1,32): |
||
− | state = addRoundKey(state,self.roundkeys[i-1]) |
||
− | state = sBoxLayer(state) |
||
− | state = pLayer(state) |
||
− | cipher = addRoundKey(state,self.roundkeys[31]) |
||
− | return cipher |
||
− | |||
− | |||
− | def decrypt(self,block): |
||
− | state = block.encode('hex') |
||
− | for i in range (1,32): |
||
− | state = addRoundKey(state,self.roundkeys[32-i]) |
||
− | state = pLayer_dec(state) |
||
− | state = sBoxLayer_dec(state) |
||
− | decipher = addRoundKey(state,self.roundkeys[0]) |
||
− | return decipher |
||
− | |||
− | def get_block_size(self): |
||
− | return 16 |
||
− | |||
− | # 0 1 2 3 4 5 6 7 8 9 a b c d e f |
||
− | SBox = ['c','5','6','b','9','0','a','d','3','e','f','8','4','7','1','2'] |
||
− | PBox = [0,16,32,48,1,17,33,49,2,18,34,50,3,19,35,51, |
||
− | 4,20,36,52,5,21,37,53,6,22,38,54,7,23,39,55, |
||
− | 8,24,40,56,9,25,41,57,10,26,42,58,11,27,43,59, |
||
− | 12,28,44,60,13,29,45,61,14,30,46,62,15,31,47,63] |
||
− | |||
− | def generateRoundkeys80(key): |
||
− | # input: hex string ex. 'ffff' |
||
− | roundkeys = [] |
||
− | for i in range(1,33): # (K0 ... K32) |
||
− | # rawKey[0:63] |
||
− | roundkeys.append(("%x" % (int(key,16) >>16 )).zfill(64/4)) |
||
− | #1. Shift |
||
− | #rawKey[19:(len(rawKey)-1)]+rawKey[0:18] |
||
− | key = ("%x" % ( ((int(key,16) & (pow(2,19)-1)) << 61) + (int(key,16) >> 19))).zfill(80/4) |
||
− | #2. SBox |
||
− | #rawKey[76:79] = S(rawKey[76:79]) |
||
− | key = S(key[0])+key[1:20] |
||
− | #3. Salt |
||
− | #rawKey[15:19] ^ i |
||
− | temp = (int(key,16) >> 15) & (pow(2,5)-1) # rawKey[15:19] |
||
− | temp = temp ^ i |
||
− | key = ( int(key,16) & (pow(2,15)-1) ) + (temp << 15) + ( (int(key,16) >> 20) <<20 ) |
||
− | key = "%x" % key |
||
− | return roundkeys |
||
− | |||
− | def generateRoundkeys128(key): |
||
− | # input: hex string ex. 'ffff' |
||
− | roundkeys = [] |
||
− | for i in range(1,33): # (K0 ... K32) |
||
− | roundkeys.append(("%x" % (int(key,16) >>64)).zfill(64/4)) |
||
− | #1. Shift |
||
− | key = ("%x" % ( ((int(key,16) & (pow(2,67)-1)) << 61) + (int(key,16) >> 67))).zfill(128/4) |
||
− | #2. SBox |
||
− | key = S(key[0])+S(key[1])+key[2:] |
||
− | #3. Salt |
||
− | #rawKey[15:19] ^ i |
||
− | temp = (int(key,16) >> 62) & (pow(2,5)-1) # rawKey[15:19] |
||
− | temp = temp ^ i |
||
− | key = ( int(key,16) & (pow(2,62)-1) ) + (temp << 62) + ( (int(key,16) >> 67) <<67 ) |
||
− | key = "%x" % key |
||
− | return roundkeys |
||
− | |||
− | def addRoundKey(state,roundkey): |
||
− | return ( "%x" % ( int(state,16) ^ int(roundkey,16) ) ).zfill(16) |
||
− | |||
− | def sBoxLayer(state): |
||
− | output ='' |
||
− | for i in range(len(state)): |
||
− | output += SBox[int(state[i],16)] |
||
− | return output |
||
− | |||
− | def sBoxLayer_dec(state): |
||
− | output ='' |
||
− | for i in range(len(state)): |
||
− | output += hex( SBox.index(state[i]) )[2:] |
||
− | return output |
||
− | |||
− | def pLayer(state): |
||
− | output = '' |
||
− | state_bin = bin(int(state,16)).zfill(64)[::-1][0:64] |
||
− | for i in range(64): |
||
− | output += state_bin[PBox.index(i)] |
||
− | return ("%x" % int(output[::-1],2)).zfill(16) |
||
− | |||
− | def pLayer_dec(state): |
||
− | output = '' |
||
− | state_bin = bin(int(state,16)).zfill(64)[::-1][0:64] |
||
− | for i in range(64): |
||
− | output += state_bin[PBox[i]] |
||
− | return ("%x" % int(output[::-1],2)).zfill(16) |
||
− | |||
− | def bin(a): |
||
− | #int to bin |
||
− | #http://wiki.python.org/moin/BitManipulation |
||
− | s='' |
||
− | t={'0':'000','1':'001','2':'010','3':'011','4':'100','5':'101','6':'110','7':'111'} |
||
− | for c in oct(a).rstrip('L')[1:]: |
||
− | s+=t[c] |
||
− | return s |
||
− | </source> |
||
− | Download code: [{{#filelink: pypresent.py}} pypresent.py] |
Latest revision as of 01:00, 16 October 2008
This is a development done by Christophe Oosterlynck under my supervision during his thesis work & internship at NXP.
The code is available here
Features:
- calculating round keys
- encrypting a block
- decrypting a block
- supports amount of rounds different from the standard amount of 32
- tested with 32, 64, 128 and 65534 rounds
- PRESENT reference implementation supports amount of rounds up to 65534