Difference between revisions of "Present python implementation"

From YobiWiki
Jump to navigation Jump to search
m
m (deleted comments from during development)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
  +
This is a development done by Christophe Oosterlynck under my supervision during his thesis work & internship at NXP.
what should be working (only tested with 1 or 2 test vectors yet):
 
  +
  +
The code is available [http://repo.or.cz/w/python-cryptoplus.git?a=blob;f=src/CryptoPlus/Cipher/pypresent.py;hb=HEAD here]
  +
  +
Features:
 
* calculating round keys
 
* calculating round keys
** to have the same results as the reference C implementation, salting the roundkeys should only XOR 5 bits with roundkey when using 128bits key (line 95 in code) but should XOR with no 5bits limit when using 80bits key (line 76 in code). But the standard describes that it should be limited to 5 bits for both key generators...
 
 
* encrypting a block
 
* encrypting a block
 
* decrypting a block
 
* decrypting a block
  +
* supports amount of rounds different from the standard amount of 32
* should support rounds up to 65534 (tested with 32, 64, 128 and 65534 rounds)
 
  +
** tested with 32, 64, 128 and 65534 rounds
** decryption testvectors have errors: the sbox on decryption behaves like the inverse of the p-box... every S-Box value is incorrect in the testvectors.<br>Example:
 
  +
** PRESENT reference implementation supports amount of rounds up to 65534
Round 1
 
Subkey: 6dab31744f41d700
 
Text after...
 
...Key-Xor: 38d2f04c34635345
 
.....P-Box: 45ef82118f2845a3
 
.....S-Box: 38d2f04c34635345
 
{{#fileanchor: pypresent.py}}
 
<source lang=python>
 
# fully based on standard specifications: http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/present_ches2007.pdf
 
# test vectors: http://www.crypto.ruhr-uni-bochum.de/imperia/md/content/texte/publications/conferences/slides/present_testvectors.zip
 
 
class Present:
 
 
def __init__(self,key,rounds=32):
 
"""Generating roundkeys
 
 
When a Present class initialized, the roundkeys will be generated.
 
You can supply the key as a 128bit or 80bit rawstring.
 
"""
 
self.rounds = rounds
 
self.key = key.encode('hex')
 
if len(self.key) == 80/4:
 
self.roundkeys = generateRoundkeys80(self.key,self.rounds)
 
elif len(self.key) == 128/4:
 
self.roundkeys = generateRoundkeys128(self.key,self.rounds)
 
else:
 
pass
 
 
def encrypt(self,block):
 
"""Encrypting 1 block (8 bytes)
 
 
Supply the plaintext block as a raw string and the raw
 
ciphertext will be returned.
 
"""
 
state = block.encode('hex')
 
for i in range (1,self.rounds):
 
state = addRoundKey(state,self.roundkeys[i-1])
 
state = sBoxLayer(state)
 
state = pLayer(state)
 
cipher = addRoundKey(state,self.roundkeys[self.rounds-1])
 
return cipher.decode('hex')
 
 
def decrypt(self,block):
 
"""Decrypting 1 block (8 bytes)
 
 
Supply the ciphertext block as a raw string and the raw
 
plaintext will be returned.
 
"""
 
state = block.encode('hex')
 
for i in range (1,self.rounds):
 
state = addRoundKey(state,self.roundkeys[self.rounds-i])
 
state = pLayer_dec(state)
 
state = sBoxLayer_dec(state)
 
decipher = addRoundKey(state,self.roundkeys[0])
 
return decipher.decode('hex')
 
 
def get_block_size(self):
 
return 8
 
 
# 0 1 2 3 4 5 6 7 8 9 a b c d e f
 
SBox = ['c','5','6','b','9','0','a','d','3','e','f','8','4','7','1','2']
 
PBox = [0,16,32,48,1,17,33,49,2,18,34,50,3,19,35,51,
 
4,20,36,52,5,21,37,53,6,22,38,54,7,23,39,55,
 
8,24,40,56,9,25,41,57,10,26,42,58,11,27,43,59,
 
12,28,44,60,13,29,45,61,14,30,46,62,15,31,47,63]
 
 
def generateRoundkeys80(key,rounds):
 
"""Generate the roundkeys for a 80 bit key
 
 
Give a 80bit hex string as input and get a list of roundkeys in return"""
 
roundkeys = []
 
for i in range(1,rounds+1): # (K0 ... K32)
 
# rawKey[0:63]
 
roundkeys.append(("%x" % (int(key,16) >>16 )).zfill(64/4))
 
#1. Shift
 
#rawKey[19:(len(rawKey)-1)]+rawKey[0:18]
 
key = ("%x" % ( ((int(key,16) & (pow(2,19)-1)) << 61) + (int(key,16) >> 19))).zfill(80/4)
 
#2. SBox
 
#rawKey[76:79] = S(rawKey[76:79])
 
key = SBox[int(key[0],16)]+key[1:20]
 
#3. Salt
 
#rawKey[15:19] ^ i
 
temp = (int(key,16) >> 15)
 
temp = temp ^ i
 
key = ( int(key,16) & (pow(2,15)-1) ) + (temp << 15)
 
key = ("%x" % key).zfill(80/4)
 
return roundkeys
 
 
def generateRoundkeys128(key,rounds):
 
"""Generate the roundkeys for a 128 bit key
 
 
Give a 128bit hex string as input and get a list of roundkeys in return"""
 
roundkeys = []
 
for i in range(1,rounds+1): # (K0 ... K32)
 
roundkeys.append(("%x" % (int(key,16) >>64)).zfill(64/4))
 
#1. Shift
 
key = ("%x" % ( ((int(key,16) & (pow(2,67)-1)) << 61) + (int(key,16) >> 67))).zfill(128/4)
 
#2. SBox
 
key = SBox[int(key[0],16)]+SBox[int(key[1],16)]+key[2:]
 
#3. Salt
 
#rawKey[15:19] ^ i
 
temp = (int(key,16) >> 62)
 
temp = temp ^ (i%32)
 
key = ( int(key,16) & (pow(2,62)-1) ) + (temp << 62)
 
key = ("%x" % key).zfill(128/4)
 
return roundkeys
 
 
def addRoundKey(state,roundkey):
 
return ( "%x" % ( int(state,16) ^ int(roundkey,16) ) ).zfill(16)
 
 
def sBoxLayer(state):
 
"""SBox function for encryption
 
 
Takes a hex string as input and will output a hex string"""
 
output =''
 
for i in range(len(state)):
 
output += SBox[int(state[i],16)]
 
return output
 
 
def sBoxLayer_dec(state):
 
"""Inverse SBox function for decryption
 
 
Takes a hex string as input and will output a hex string"""
 
output =''
 
for i in range(len(state)):
 
output += hex( SBox.index(state[i]) )[2:]
 
return output
 
 
def pLayer(state):
 
"""Permutation layer for encryption
 
 
Takes a 64bit hex string as input and will output a 64bit hex string"""
 
output = ''
 
state_bin = bin(int(state,16)).zfill(64)[::-1][0:64]
 
for i in range(64):
 
output += state_bin[PBox.index(i)]
 
return ("%x" % int(output[::-1],2)).zfill(16)
 
 
def pLayer_dec(state):
 
"""Permutation layer for decryption
 
 
Takes a 64bit hex string as input and will output a 64bit hex string"""
 
output = ''
 
state_bin = bin(int(state,16)).zfill(64)[::-1][0:64]
 
for i in range(64):
 
output += state_bin[PBox[i]]
 
return ("%x" % int(output[::-1],2)).zfill(16)
 
 
def bin(a):
 
"""Convert an integer to a bin string (1 char represents 1 bit)"""
 
#http://wiki.python.org/moin/BitManipulation
 
s=''
 
t={'0':'000','1':'001','2':'010','3':'011','4':'100','5':'101','6':'110','7':'111'}
 
for c in oct(a).rstrip('L')[1:]:
 
s+=t[c]
 
return s
 
</source>
 
Download code: [{{#filelink: pypresent.py}} pypresent.py]
 

Latest revision as of 02:00, 16 October 2008

This is a development done by Christophe Oosterlynck under my supervision during his thesis work & internship at NXP.

The code is available here

Features:

  • calculating round keys
  • encrypting a block
  • decrypting a block
  • supports amount of rounds different from the standard amount of 32
    • tested with 32, 64, 128 and 65534 rounds
    • PRESENT reference implementation supports amount of rounds up to 65534